
INDIAN SCHOOL MUSCAT CLASS 12 CHEMISTRY d- BLOCK ELEMENTS

(a) Ag₂SO₄ (b) CuF₂

	(c) ZnF ₂ (d) Cu ₂ Cl ₂
8	Anomalous electronic configuration in the 3d series are of (a) Cr and Fe (b) Cu and Zn (c) Fe and Cu (d) Cr and Cu
9	Which of the following are d-block elements but not regarded as transition elements? (a) Cu, Ag, Au (b) Zn, Cd, Hg (c) Fe, Co, Ni (d) Ru, Rh, Pd
10	Transition elements form alloys easily because they have (a) Same atomic number (b) Same electronic configuration (c) Nearly same atomic size (d) None of the above
11	Electronic configuration of a transition element X in +3 oxidation state is [Ar] 3d ⁵ . What is its atomic number? (a) 25 (b) 26 (c) 27 (d) 24
12	Lanthanide contraction is due to increase in (a) Shielding by 4 f electrons (b) Atomic number (c) Effective nuclear charge (d) Size of 4 f-orbital
13	A transition element that has no electron in the ns orbital belongs to the a) 1 st transition series b) 2 nd transition series c) 3 rd transition series d) 4 th transition series
14	The highest oxidation state shown by the transition element in 5d series is a) +4 b) +5 c) +8 d) +7
15	Copper has a positive Cu ²⁺ /Cu reduction potential value because a) high enthalpy of ionization b) low enthalpy of hydration

- c) high enthalpy of hydration
- d) option (A) and (B)

FILL IN THE BLANKS

1.	Transition metals is associated with higher catalytic activity due to
	oxidation state.
2.	There are unpaired 'd' electrons in present Cr ²⁺ ion.
3.	Element in the 4d series that is not regarded a transition metal is
4.	Transition metal compounds impart characteristic color to the flame due to
5.	Element in the 3d series with highest oxidation state is
6.	Transition metals form complexes due to
7.	Zr and Hf have similar sizes due to
8.	Os can show highest oxidation state of
9.	Inelements the 4f orbitals are progressively filled.
10.	Lanthanoid that is commonly used as analytical reagent is

MATCH THE FOLLOWING

II

(METAL)	(CATALYST IN)
a) Cu	1. Haber's process
b) Fe	2. Ostwald's process
c) Ni	3. Deacon's process
d) Rh	4. Catalytic hydrogenation
Column I	Column II
(lon)	(Magnetic moment)
a) Cu ²⁺	1. 2.9 BM
b) Fe ²⁺	2. 4.0 BM
c) Ni ²⁺	3. 1.8 BM
d) Co ²⁺	4. 5.0 BM

Column II

ASSERTION REASONING TYPE QUESTIONS-

1 Assertion. Mercury is not considered as a transition element.

Column I

Reason. Mercury is liquid.

Assertion. Ti(III) salts are coloured whereas Ti(IV) salts are white.

Reason. Ti(III) is has no unpaired electrons in d compared to Ti(IV) which has one unpaired electron in d orbital.

Assertion. The metals of 4d and 5d transition series have greater enthalpies of atomization than the corresponding elements of the 3d series.

Reason. The metal-metal bond in 4d and 5d series are stronger than those in the 3d series.

4 Assertion. Manganese shows a number of oxidation states.

Reason. The difference of energy between 3d and 4s subshells is large.

Assertion. In any transition series the magnetic moment of M^{2+} ions first decreases and then increases.

Reason. In a transition series, the number of unpaired electrons first increases and then decreases

6 Assertion: Zn, Cd and Hg are normally not considered transition metals.

Reason: d-orbitals in above elements are completely filled, hence above metals do not show the general characteristic properties of the transition elements.

Answers:

Multiple choice:

1d	2b	3b	4b	5d	6a	7b	8d
9b	10c	11b	12a	13b	14c	15d	

Fill in the blanks:

1. variable	2. 4	3. Cd	4. d-d transition	5. Mn
6. small size, high availability of d or	•	7. lanthanide contraction	8. +8	9. lanthanide
10.Ce				

Match the following: I a. 3 b. 1 c.4 d.2

II a.3 b.4 c.1 d.2

Assertion Reasoning:

	1. B	2. C	3.A	4.C	5.D	6.A
--	------	------	-----	-----	-----	-----